Student name:	

2021

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced

23 August 2021

General Instructions

- Reading time 10 minutes
- Working time 180 minutes
- Write using black pen
- NESA approved calculators may be used
- A reference sheet is provided at the back of this paper
- In questions 11-39, show relevant mathematical reasoning and/or calculations

Total marks:

Section I – 10 marks (pages 1-7)

100

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II – 90 marks (pages 8-36)

- Attempt questions 11-39
- Allow about 2 hours and 45 minutes for this section

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- **1.** What is the gradient of the line 3x + 4y + 5 = 0
 - A. $-\frac{3}{4}$
 - B. $\frac{3}{4}$
 - c. $-\frac{4}{3}$
 - D. $\frac{4}{3}$
- 2. Estragon has scored 90%, 78%, 81%, and 83% on his first four class tests. After the fifth class test, his mean mark is increased by 1%.

What was Estragon's mark in his fifth class test?

- A. 92%
- B. 84%
- C. 88%
- D. 83%

- 3. Which of the following is equal to $\frac{\log_4 16}{\log_4 2}$?
 - A. 8
 - B. log₄ 8
 - C. log₄ 12
 - D. 4
- **4.** The function $f(x) = \frac{1}{x}$ is translated 3 units up and 2 units right to produce y = g(x). Which of the following is the equation of the translated function g(x)?
 - A. $g(x) = \frac{1}{x+2} 3$
 - B. $g(x) = \frac{1}{x+2} + 3$
 - c. $g(x) = \frac{1}{x-2} + 3$
 - D. $g(x) = \frac{1}{x-2} 3$

5. Given that $\tan\theta=\frac{3}{2}$ for $0<\theta<\pi$, what is the exact value of $\sin\theta$?

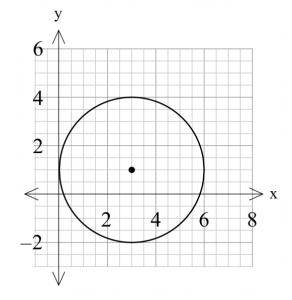
A.
$$-\frac{2}{\sqrt{13}}$$

B.
$$\frac{3}{\sqrt{13}}$$

c.
$$-\frac{3}{\sqrt{13}}$$

D.
$$\frac{2}{\sqrt{13}}$$

6. What is the domain and range of $f(x) = \sqrt{x-4}$?


A. Domain:
$$(-\infty, \infty)$$
 and Range: $(0, \infty)$

B. Domain:
$$[4, \infty)$$
 and Range: $[0, \infty)$

C. Domain:
$$[0, \infty)$$
 and Range: $[4, \infty)$

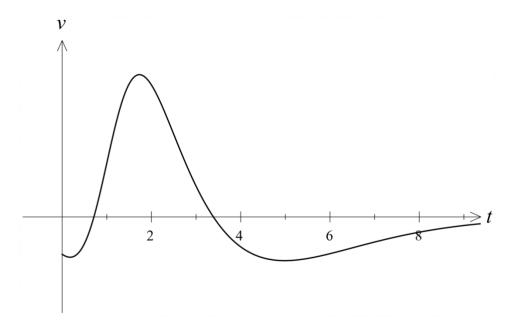
D. Domain:
$$[2, \infty)$$
 and Range: $[0, \infty)$

7.

Which of the following is the equation for the circle shown in the diagram above?

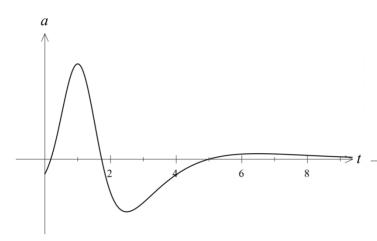
A.
$$x^2 + 6x + y^2 + 2y + 1 = 0$$

B.
$$x^2 - 6x + y^2 + 2y - 1 = 0$$

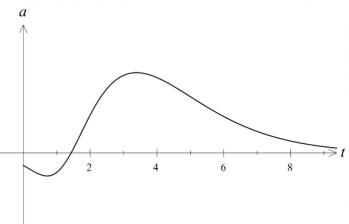

C.
$$x^2 - 6x + y^2 - 2y + 1 = 0$$

D.
$$x^2 - 6x + y^2 - 2y - 1 = 0$$

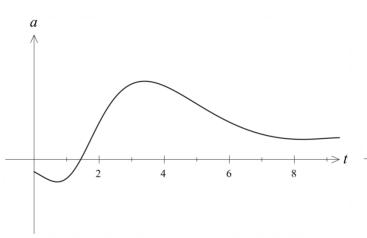
8. For events A and B over a sample space $P(A \cap B) = 0.2$ and P(A|B) = 0.25

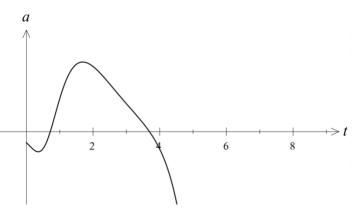

What is P(B) ?

9. The graph below is velocity/time graph for a particle



Which of the following could be the acceleration graph?


A.


B.

C.

D.

10. Which of the following is the gradient of the <u>normal</u> to $y = \log_2 x$ at the point (8,3) ?

- A. $-\frac{1}{8 \ln 2}$
- B. $-8 \ln 2$
- c. $\frac{1}{8 \ln 2}$
- D. 8 ln 2

Please turn over for Multiple Choice answer sheet

Mathematics Advanced Section II question and answer booklet

90 marks

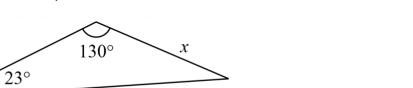
Attempt Questions 11-39
Allow about 2 hours and 45 minutes for this section

Part 1: Attempt Questions 11-29 (44) marks Part 2: Attempt Questions 30-39 (46) marks

Instructions

- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided on pages 37–41 of Booklet. If you use this space, clearly indicate which question you are answering as well as making a notation on the original question

Please turn over


Section II Part 1: Attempt Questions 11-29 (44) marks

• Extra writing space is provided on pages 37–41 of Booklet. If you use this space, clearly indicate which question you are answering as well as making a notation on the original question

Question 11 (1 mark)	
Differentiate $3 + \tan 8x$	1
Question 12 (2 marks)	
Fully simplify $\frac{x^2 - 4}{2x^2 + 3x - 2}$	2

Please turn over for question 13

Question 13 (1 marks) Find the value of x correct to 1 decimal place

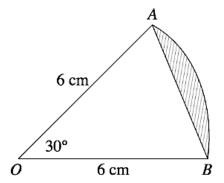
Question 14 (2 marks)

Evaluate $\int_{0}^{3} (6x^2 + 2x + 5) dx$

(b) e^{x^2-1} 1 (c) $\ln(\cos x)$ 2		estion 15 (4 marks)	
(b) e^{x^2-1} 1 (c) $\ln(\cos x)$ 2		ferentiate and fully simplify where possible	
(b) e^{x^2-1} 1 (c) $\ln(\cos x)$ 2	(a)	$10^{(x+4)}$	1
(c) ln(cos x) 2			
(c) ln(cos x) 2			
(c) $\ln(\cos x)$ 2			
(c) $\ln(\cos x)$ 2			
(c) $\ln(\cos x)$ 2			
(c) $\ln(\cos x)$ 2	(b)	e^{x^2-1}	1
	(2)		_
	(c)	$\ln(\cos x)$	2

Question 16 (2 marks)	
find $\int (1 + \tan^2 x) dx$	2
Question 17 (1 mark)	
The function $f(x)$ is a probability density function.	1
$f(x) = \begin{cases} 0.2 & \text{for } 0 \le x < k \\ 0 & \text{otherwise} \end{cases}$	
Find the value of k	

Question 18 (3 marks)


AstraZeneca and Pfizer are currently the two Covid-19 Vaccines available in Australia. 50 unvaccinated Newtown residents were asked about their willingness to be vaccinated by either vaccine over the next 3 months.

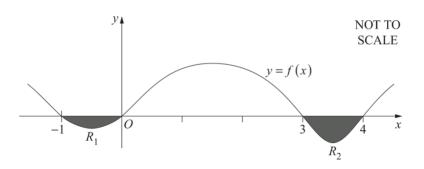
- 26 residents said they were willing to be vaccinated by the Pfizer vaccine
- 22 residents said they were willing to be vaccinated by the AstraZeneca vaccine
- 12 residents said they were NOT willing to be vaccinated

(a)	A random resident from the group was selected. By using a Venn diagram or otherwise, find the	2
	probability that they were willing to be vaccinated by either vaccine	
(b)	Two residents were selected (without replacement). What is the probability that at least one of	1
	them was willing to be vaccinated ?	

Question 19 (2 marks)

In the diagram, OAB, is a sector of a circle with centre O and a radius of 6 cm, where $\angle AOB = 30^{\circ}$

NOT TO SCALE


(a)	Find the exact value of the area of thangle OAB	1
(b)	Find the exact area of the shaded segment	1

Question 20 (2 marks)

Solve $ 4x - 2 = 10$	2

Question 21 (2 marks)

The diagram below shows the graph of y = f(x) with intercepts at x = -1, 0, 3, and 4

2

- The area of shaded region R_1 is 4
- The area of shaded region R_2 is 5
- It is given that $\int_0^4 f(x) \ dx = 15$

What is the value of $\int_{-1}^{3} f(x) dx$?

Question 22 (4 marks)

Atticus owns a biased six-sided die which has the following discrete probability distribution

Х	1	2	3	4	5	6
P(X = x)	0.25	0.25	0.2	0.1	0.1	0.1

(a)	Find $P(3 < X \le 6)$	1
/b\	Show that the expected value $E(V) = 2.05$	1
(D)	Show that the expected value $E(X) = 2.85$	1
(c)	At a school fund raiser, Atticus uses his biased die to run a game, where students pay \$3.50 per game to roll the biased die and in turn win \$1 multiplied by the number that they have rolled	2
	How much profit or loss would Atticus expect to make for 200 games?	

Question 23 (2 marks)

The 2021 Semester one report marks for a Year 12 Advanced Mathematics cohort at a particular selective boys high school is normally distributed with a mean of 76 and a standard deviation of 11

(a)	What is the probability that a randomly selected student from the cohort will have a mark between 54 and 98?	1
(b)	A student is selected randomly from the cohort. What is the probability that his mark is less than or equal to 65?	1

Question 24 (2 marks)	
Prove that $(\sin x + \cos x)(\sec x - \csc x) = \tan x - \cot x$	2
Overtion OF (Overally)	
Question 25 (2 marks)	
Find $\int x(x^2+5)^9 dx$	2

Question 26 (3 marks)

Five values of a function f(x) are shown in in the table below.

х	20	25	30	35	40
f(x)	10	12	25	28	20

Use	e the trapezoidal rule with the five values given in the table to estimate	3
	$\int_{20}^{40} f(x) \ dx$	
	estion 27 (3 marks)	
(a)	Differentiate $y = xe^{2x}$	1
(b)	Hence find the exact value of $\int_0^2 e^{2x} (3 + 6x) dx$	2

Question 28 (3 marks)

The following table shows the number of absences from class versus the common test mark in a mathematics class of 11 students (student Joseph K missed the test and so does not appear in the table)

Student	Α	В	С	D	Е	F	G	Н	I	J
Number of absences	0	1	1	2	3	3	6	8	11	16
Mark %	90	85	88	84	82	80	75	60	55	34

(a)	Find the equation of the least-squares line of best fit in terms of number of absences (n) and the mark (m) (correct to 3 decimal places)	2
(b)	Student Josef K who missed the test, was absent from 13 maths lessons in total.	1
	His teacher estimated his mark using the equation of the line of best fit.	
	His teacher estimated his mark using the equation of the line of best fit. What was Josef's estimated mark? (correct to the nearest whole number)	

Question 29 starts over the page

Question 29 (3 marks)

The temperature of a freshly served bowl of phở bò from Tan Viet Noodle House is given by the following equation:

$$T = 22 + 60e^{-0.1t}$$

Where T is the temperature in degrees Celsius

And t is the time in minutes.

(a)	To the nearest degree, what is the temperature of the phở after 1 minute?	1
(b)	How long will it take for the temperature of the phở to drop to 62°	2

End of section II part 1

Please turn over

Section II Part 2: Attempt Questions 30-39 (46) marks

Question 30 (5 marks)

Use the following standard Z-table for this question.

					first decir	nal place				
z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9
0.	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159
1.	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713
2.	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981
3.	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

(a) What is $P(X \le 1.8)$?	
(b) What is $P(-1.2 \le X \le 0.3)$?	
(c) The birthweight of babies is known to be normally distributed. According to data whice Australian pregnancies between 1998 and 2007, the mean (μ) birthweight for boys was grams with a standard deviation (σ) of 430 grams.	
What is the probability that a randomly selected newborn boy will weigh less than 38	90 grams '

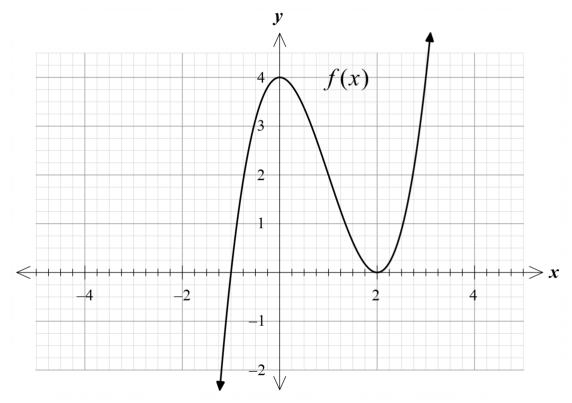
Consider the function $f(x) = x^3 + 3x^2 - 9x$

a)	Show that $f(x)$ has 2 stationary points at $P(1, -5)$ and $Q(-3, 27)$ and determine their nature	3
b)	Find any points of inflexion	2

Question 31 (continued)

00	NOT determine the <i>x</i> intercepts of the curve
••••	
••••	
••••	
••••	

Question 32 (3 marks)


A continuous random variable X has a probability density function f(x) given by

$$f(x) = \begin{cases} \frac{x}{2} + \frac{1}{4} & \text{for} & 1 \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

(a)	Find the cumulative distribution function	2
(b)	Find $P(1.6 \le X \le 2)$	1

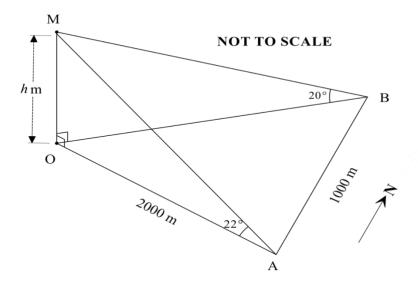
Question 33 (3 marks)

The graph of $f(x) = x^3 - 3x^2 + 4$ is shown below

(a)	On the diagram above, make an accurate sketch of $g(x) = -x^2 + x + 2$	marking the vertex
	and all intercepts	

2

1


(b) Hence, using the graphical method, find the number of solutions to the following equation

$$x^3 - 3x^2 + 4 = -x^2 + x + 2$$

Question 34 (5 marks)

Sancho Panza rides a donkey 1000 metres due north along a straight level road from point A to point B. A is 2000 metres from point O, the base of the vertical mountain OM, where M is the top of the mountain. O is on the same horizontal plane as the road and directly below M. The mountain is to the left of the road and its height above point O is O is O metres

- From point A, the angle of elevation to the top of the mountain is 22°
- From point B, the angle of elevation to the top of the mountain is 20°

(a)	Show that $n=000$ metres to the hearest metre	_
(b)	Find OB to the nearest metre	1

Question 34 continues over next page

Question 34 (continued)

(c)	Hence, find the bearing of O from B (nearest degree)

3

Turn over for Question 35

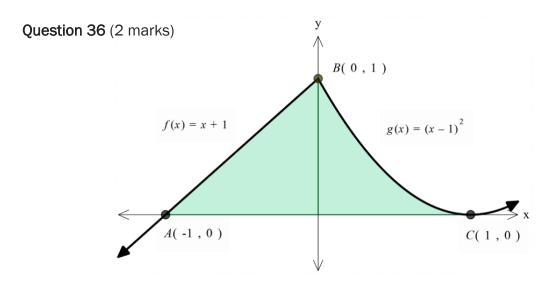
Question 35 (5 marks)

A tank initially holds 8100 litres of Water. The water drains from the bottom of the tank. A mathematical model predicts that the volume, V litres, of water that will remain in the tank after t minutes is given by

	$V = 8100 \left(1 - \frac{t}{90}\right)^2$	
a)	How long does the tank take to drain fully?	1
b)	What volume does the model predict will remain after 20 minutes?	1

ninutes?

2


(c) At what rate does the model predict that the water will be draining from the tank after 30

Question 35 continues over next page

Question 35 (continued)

(d)	At what time does the model predict that the water will drain from the tank at its fastest rate?	1

Turn over for Question 36

The diagram above shows portions of the graphs for f(x) = x + 1 and $g(x) = (x - 1)^2$

- f(x) and g(x) intersect at the point B(0,1)
- The x intercept of f(x) is A(-1,0)
- g(x) touches the x axis at point C(1,0)

Find the exact shaded area that is enclosed by the $f(x)$, $g(x)$, and the x – axis

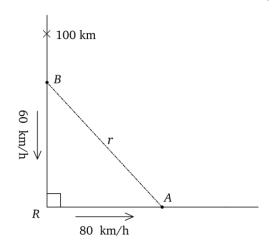
2

Question 37 (6 marks)

A particle moves in a straight line. Its velocity $v \, \text{m/s}$ at time t seconds is given by

$$v = 2 - \frac{4}{t+1}$$

(a)	Show that the particle is at rest when $t=1$	1
(b)	The particle's initial displacement is 1 m. Find its displacement when at rest (3 decimal points)	3


Question 37 continues over next page

Question 37 (continued)

(c)	Find the expression for the accelaration of the particle at time t	1
(d)	Explain why the displacement of the particle is always positive	1

Question 38 (5 marks)

Two straight roads meet at R at an angle of 90° . At time t=0 car A leaves R on one road, and car B is 100 km from R on the other road. Car A travels away from R at a speed of 80 km/h, and car B travels towards R at a speed of 60 km/h.

The distance between the cars at time t hours is r km.

(a)	Show that r^2	=	$2000(5t^2)$	_	6t	+	5)	١

2

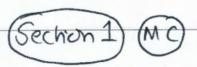
Question 38 (continued)

Hence or otherwise find the minimum distance (r) between the cars justify your answer with relevant mathematical arguments)	

Question 39 (5 marks)

Between 8 am and 8 pm on July 18, 2021, the height of the tide in Sydney harbour was given by

$$h(t) = 1 + 0.4 \sin\left(\frac{\pi}{6}t\right) \text{ for } 0 \le t < 12$$


Where h is the height of the tide in metres, and t is in hours with t=0 at 8 am

(a)	What is the period of $h(t)$	1
(b)	What was the height $h(t)$ at low tide, and at what time did this low tide occur	2
(c)	A cruise ship is only able to enter the harbour if the tide is at least 1.2 m. Find all the times between 8 am and 8 pm on July 18 2021 that the cruise ship was able to enter the harbour	2
(c)	A cruise ship is only able to enter the harbour if the tide is at least 1.2 m. Find all the times between 8 am and 8 pm on July 18 2021 that the cruise ship was able to enter the harbour	2
(c)		2
(c)		2
(c)	between 8 am and 8 pm on July 18 2021 that the cruise ship was able to enter the harbour	2
(c)	between 8 am and 8 pm on July 18 2021 that the cruise ship was able to enter the harbour	2
(c)	between 8 am and 8 pm on July 18 2021 that the cruise ship was able to enter the harbour	2

End of paper

Salutions 2021 STHS

Advanced Trial

2345678910.

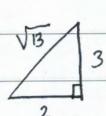
ACDCBBCDAB

1. 3x+4y+5=y

y = -3x - 5 : gradient = $-\frac{3}{4}$; (A)

2. Original average = 90%+78%+81%+83% = 332

new mean = 84%


 $\frac{20+332}{5} = 84$

x = 5x84 - 332 = 88%

3. logy 16 = logy 2 = 4 logy 2 = 4 :D

4. 7c-2 1 2 right 3up

5.

3 $\tan \theta = \frac{3}{2}$ $typ = \sqrt{3^2 + 2^2}$

ten Ive : in glar 93

 $Sin \Theta = \frac{opp}{lup} = \frac{3}{\sqrt{13}}$ sin + ve as in 91

OLO LT

: in 91

.: (B)

6. f(x) = \x - 4 x must be > 4

y must be 20

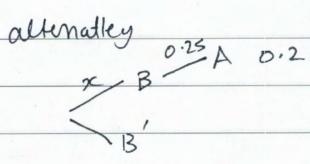
:, D: [4,00) R: [0,00) .. (B)

7. Radius = 3

centre (3,1) , = 0

: equation => (2-3)2+(y-1)2=32

22-6x +9+42-29+1=9.


 $x^2 - 6x + y^2 - 2y + 1 = 0$

8. P(AIB) = P(ANB)

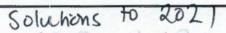
P(B)

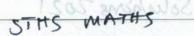
 $\frac{P(B) = P(AnB)}{P(AlB)} = \frac{0.2}{0.25}$

8 continued ...

$$\chi = 0.2$$

The velocity curve has 3 turning points: acceleration


curve must have exactly 3 x-intercepts so we


eliminate B, C, D : Must be (A)

10. f(x) = log >c f'(x) = 1

 $m_{tan} = \beta'(z) = \frac{1}{2nco \times 8}$

Mnoral = -1 = -8 ln(2)

ADVANCED TRIAL

dy = 8 sec2 8x

12)
$$x^2 - 4$$
 $(x-2)$
 $2x^2 + 3x - 2$ $(2x-1)(x+2)$

$$2x^{2}+3x-2$$

$$= \frac{x-2}{2x-1}$$

$$x = \frac{8 \sin 130^{\circ}}{\sin 130^{\circ}}$$

$$\int_{6}^{3} (6x^{2} + 2x + 5) dx = \left[\frac{6x}{3} + \frac{2x}{2} + 5x\right]$$

$$= (2x3^3 + 3^2 + 5x3) - (0)$$

(a)
$$\frac{d}{dx} = 1 \times \log_e(10) \times 10^{(x+u)}$$

$$= \log_e(10) \log_e(10) \times 10^{(x+u)}$$

(b)
$$\frac{d}{dx} e^{x^2-1} = 2xe^{x^2-1}$$

20 ornwise.	alternate solution
LO openinge.	ν
PDF: area =1	Jordx = 1
1 A=1 0.2k=1.	[0.2x], =1
1/1/ :· k=5	0.2K=1
× ×	:· K=5

918)

(5)

(12)

(10)

(6)

(12)

(10)

(16)

(22+26+12)-50

=10

(a) $P(willing either vaccine) = P(both) = \frac{10}{50} = \frac{1}{5}$ (b) P(at least one willing) = 1 - P(neither willing) $= 1 - \frac{12}{50} \times \frac{11}{49}$

$$=\frac{1159}{1225}\left(0.946122449\right)$$

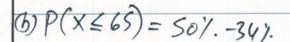
$$4x-2=10$$
 $4x-2=-10$

$$4x=12$$
 $4x=-8$

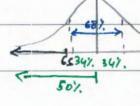
$$x=3$$
 $x=-2$

$$15 = \int f(x) dx - 5$$
 : $\int f(x) dx = 15 - -s$

$$15 = \int_{0}^{3} f(x) dx - 5 \quad \text{i.} \int_{0}^{3} f(x) dx = 15 - 5$$


$$= 20$$

$$\int_{0}^{3} f(x) dx = \int_{0}^{3} f(x) dx + \int_{0}^{3} f(x) dx \cdot = -4+20$$


Q23)

(imperiduale)

N-28 1-6 N N+8 N+28 S4 65 76 87 98

=16/.

LHS = (Sinx + cosx) (Secx - Cosecx)

= Sinx secx + COSX secx - Sinx Cosecx - COSX COSECX.

= tanx-cotx

= RHS

$$925)$$
 $\int x(x^2+5)^9 dx = \frac{1}{2} \int 27c(x^2+5)^9 dx$

= \f(\frac{1}{2}\)\[\frac{1}{2}\]\[\

$$=\frac{1}{2}\times\frac{1}{10}\times(x^2+5)^{10}+C$$

926) trapezoidal rule.

n=4 (#of subintrals not # function values)

frx) dx = 1 x leight x 3 tvs+ lest + 2x intermelielu vidue }

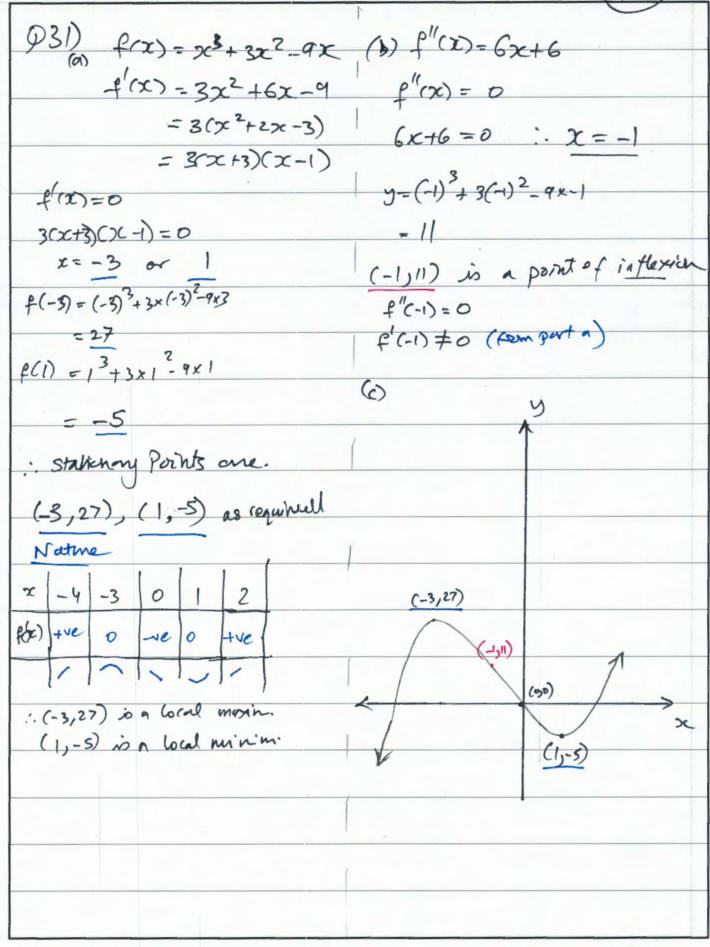
$$927)$$
 $y = xe^{2x}$ $u = x du = 1$ $v = e^{2x} dv = 2e^{2x}$

$$V = e^{2\pi} dv = 2e^{2x}$$

$$= (1+2x)e^{2x} \qquad \text{or} \qquad e^{2x} + 2xe^{2x}$$

(b)
$$\int e^{2x} (3+6x) = 3 \int e^{2x} (1+2x) dx$$

regression line


B = -3.465 where y = A+Bx.

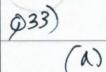
: M = - 3.455 n + 90.920 where n = numbro fabsaro m= mark.

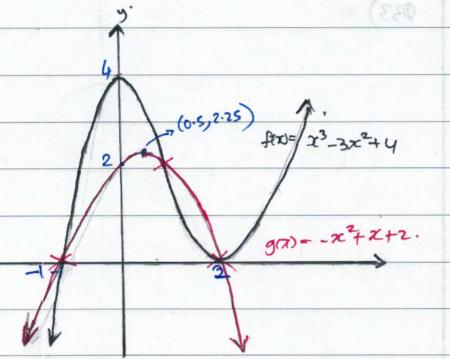
P(X < 0.6) = 0.7257 (for 7 touble)

$$f(x) = \frac{2}{2} + \frac{1}{4} \qquad 1 < x \leq 2.$$
Servine

$$F(x) = \int f(x) dx$$

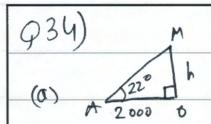
$$\int \int \frac{1}{(\frac{x}{2} + \frac{1}{4})} dx \quad 1 \le x \le 2.$$

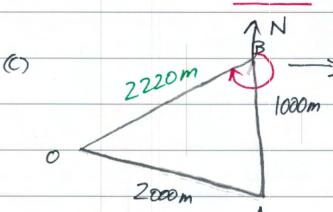

$$= \int_{0}^{\infty} \left[\frac{x^{2}}{4} + \frac{z}{4} \right] \frac{1}{1} \leq x \leq 2.$$


$$\overline{f(1)} = \underbrace{\left\{ \frac{x^2}{4}, \frac{x}{4} \right\} - \left(\frac{1^2}{4} + \frac{1}{4} \right)}_{\text{elsenter}}$$

$$F(x) = \begin{cases} x^2 + x - 2 \\ 4 \end{cases} \quad 1 \le x \le 2 \quad \left(\text{or } \frac{x^2 + x}{4} - \frac{1}{2} \right)$$

$$=0.46 \qquad \left(\text{or} \quad \frac{23}{50}\right)$$




$$= -(x^2 - x - 2)$$

(b) Solutions to
$$x^2-3x^2+4=-x^2+x+2$$
 me.

me interscetions of fix) and gix).

$$CosB = 2220^{2} + 1000^{2} - 2000^{2} = 0.483$$

$$2 \times 1000 \times 2200$$

$$(935)(a)$$
 $V = 8100 (1 - \frac{t}{90})^2$

: t = 90 minules

(c)
$$dV = -\frac{1}{40} \times \frac{8100 \times 2 \times (1-t)}{40} = -\frac{180(1-t)}{40}$$

= 2t-180 L/m

 $\frac{dV}{dt} = \frac{2\times30 - 180}{-120}$

a)
$$\frac{d^2v}{dt^2} = 2$$
 ... dv dues not have any stationary points

: Maximum rake must at be at either endpoint (as the use no points of inflexed

: fautest draing rate when E=0

$$A = \int (x+1)dx + \int (x-1)^2 dx$$

$$= \left[\frac{x^2}{2} + 2C\right] + \left[\frac{(x-1)^3}{3}\right]_0^1$$

$$= 0 + \left(\frac{(-1)^2}{2} + 1\right) + \left[0 - \frac{(-1)^3}{3}\right]$$

$$(9)$$
 $V = 2 - \frac{4}{t+1}$ when $t=1$ $V = 2 - \frac{4}{1+1}$

\$37 b) waterwel ..

(c)
$$a = \frac{dv}{dt} = \frac{d}{dt} 2 - \frac{4}{t+1}$$

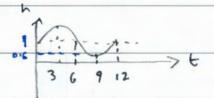
$$\alpha = \frac{4}{(t+1)^2}$$

937) d) The particle is only at rest when t=1 i. The displacement come only has I stationing point at E=1 ... The acceleration at t=1 is 4 which is possible . The displacement come has a local minimum at t-1 (Concorreup) and me displacent = 0.227 which is positive -..

displacent always > 0.227 : positive 0 38) a) JGokm/h. RB= 100-60E RA = 80t 80km/h. r2 = RB2+ RA2 = (100-60t)2+(80t)2 = 10000 - 12000t + 3600t2 + 6400E2 = (0000 t2 - 12000 + 10000 12 = 2000 (5t2-6++5) as required

$$= 2000(10t-6)$$

check to so if minin.


12 minim who 650.6

$$= \sqrt{2000(5x0.6^2 - 6x0.6 + 5)}$$

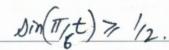
$$939$$
 (a) Period = 2π $b=\pi$ $h(t)=1+0.4sin(\pi t)$

$$= 2\pi \div \pi = 2\pi \times 6 = 12$$

= 0.6m

9 a.m. nol (p.M.

minim ocars 3/4 of perul = 3/x12 = 9 hours.


: time = 8 am + 9 hours

= 5 P.m.

1+0.45in(It) >1.2m.

0.45in (176t) > 0.2m

TG = (T/6t) = 5 T/6

12625 : Ship can enter harbour between

8+1= 9 a.m

3+5=13 = 1p.m

THE END